A survivable variant of the Tree-Star problem
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1 Introduction

Given a complete mixed-weighted graph G = (V, EU A), the Tree-Star (TS) problem is a net-
work design problem where the goal is to construct a structure consisting of two interconnected
sections. The first section, called the backbone network, is a tree spanning a subset of vertices
known as hubs, using edges from E. The second section, called the tributary network, connects
the remaining vertices, referred to as terminals (non-hub vertices), to the hubs in the backbone
network using arcs from A. The objective of the TS problem is to design such a structure at
minimum cost, with respect to a cost function ¢ : E — R* for the edges and a cost function
d: A — RT for the arcs. Additionally, d;; represents the cost of opening a hub at vertex i € V.

This problem is introduced by Lucena et al. in [I] where a mathematical model for solving
it using a Branch-and-Cut algorithm is proposed, and its NP-hardness is established in [2].

Given the importance of resilience in network design, we study the I-Survivable Tree-Star
(1-S-TS) problem, which is an extension of the TS problem. In this variant, we take into
account one potential vertex failure, which may cause a loss in connectivity in one or both of
the network sections. For example, if a non-leaf hub i in the backbone network fails, the tree
could be split into a number of connected components equal to the degree of i, breaking the
connectivity of the backbone network and potentially isolating any terminals attached to . The
1-S-T'S problem can be seen as a particular case of the k-Survivable Tree-Star (k-S-TS) problem
in which up to k vertex failures can happen simultaneously. To prevent service disruptions due
to hub breakdowns, we propose a model that ensures connectivity in the network despite the
failure of any vertex in the graph, still at minimum cost. In order to achieve this, we consider
the addition of extra edges and arcs, referred to as backup edges and backup arcs.

2 Problem formulation

The Integer Linear Programming (ILP) model we developed to solve the 1-S-T'S problem can be
interpreted as solving the nominal TS problem while ensuring survivability by adding backup
edges. Specifically, we define the following binary decision variables:

» x;; = 1 if edge 75 connects two hubs in the backbone tree, for all ¢j in

o y;; = lifarc (4, ) is used to connect terminal 7 to hub j, for all (i, j) € A. y;; = 1 means
that node i is selected as a hub, and y;; = 0 indicates that node 7 is a terminal

. x;j =1 if edge ij in F is used as a backup edge, i.e., it is used to fix the backbone tree
and maintain hub connectivity when some hub fails

. l‘?k = 1 if edge jk in E\J(7) is used as a backup edge to maintain connectivity when hub
i is down, for all 7 in V. It is recalled that 0(i) = d({i}) is the set of all the edges of F
that are incident to .



With those variables, the ILP model is as follows:
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The objective function minimizes the cost of constructing the backbone network, including
the setup costs of the hubs, the tributary network, and the backup edges. Constraint (/1)
ensures that the backbone has enough edges to form a tree. Furthermore, to guarantee that the
backbone network is indeed a tree, constraint prevents the formation of cycles. Constraints
(3) and ensure the connectivity of the backbone network even in the event of a hub failure,
by selecting the appropriate number of backup edges and preventing these edges from forming
cycles when the corresponding vertex i fails. While this approach preserves connectivity in the
event of any hub failure, the main edges of the backbone network and the backups may jointly
form cycles. The connection between the terminals and the rest of the network is enforced
by constraint @ Linking each terminal to two hubs ensures it remains connected to the
backbone network even if one of the hubs it is linked to fails. To support this, constraint
imposes that there must be at least two hubs in the solution. Constraints @ and ensure
that edges are only used to connect two hubs and that an edge cannot simultaneously serve
as a main edge and a backup edge. These constraints also prevent direct connections between
two terminals. Finally, constraint @ ensures that any edge selected to address the failure of
a vertex 7 is designated as a backup edge.

Different options are explored to solve some instances of 1-S-T'S to optimality. Because the
number of subtour elimination constraints and is exponential in number, we resort to
a branch-and-cut approach, dynamically adding these constraints only when deemed neces-
sary. Additionally, valid inequalities have been identified for solutions containing more than
two hubs. Experimentally, using these inequalities has led to significant performance improve-
ments, enabling the solution of larger problem instances. Ongoing research focuses on further
enhancing performance to tackle larger problem instances. Numerical results obtained using
Julia paired with Gurobi will be presented at the conference.
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